
Problem Solving Problem Solving 
MethodologyMethodology

Sisira Kumar Kapat

Department of Computer Science & Engineering,
UCP Engineering School, 

Berhampur, Orissa



Contents

• Algorithm, Pseudo code and Flowchart 
• Generation of Programming Languages
• Structured Programming Language
• Examples of Problem solving through FlowchartExamples of Problem solving through Flowchart



Introduction

• Problem
• Requirement to solve a problem



Algorithm
• Algorithm is a finite sequence of well-defined, computer-

implementable instructions, typically used to solve a class of problems 
or to perform a computation

• Properties
– Clear and Unambiguous: Algorithm should be clear and unambiguous. 

Each of its steps should be clear in all aspects and must lead to only one 
meaning.

– Well-Defined Inputs: If an algorithm says to take inputs, it should be well-
defined inputs.defined inputs.

– Well-Defined Outputs: The algorithm must clearly define what output will 
be yielded and it should be well-defined as well.

– Finiteness: The algorithm must be finite, i.e. it should not end up in an 
infinite loops or similar.

– Feasible: The algorithm must be simple, generic and practical, such that it 
can be executed upon will the available resources. It must not contain 
some future technology, or anything.

– Language Independent: The Algorithm designed must be language-
independent, i.e. it must be just plain instructions that can be 
implemented in any language, and yet the output will be same, as 
expected



Pseudo code

• Pseudocode is an informal way of programming 
description that does not require any strict 
programming language syntax or underlying 
technology considerations. 

• It is used for creating an outline or a rough draft of a 
program. program. 

• Pseudocode summarizes a program’s flow, but 
excludes underlying details. 

• System designers write pseudocode to ensure that 
programmers understand a software project's 
requirements and align code accordingly.



Pseudo code

• Pseudocode is not an actual programming 
language. So it cannot be compiled into an 
executable program. 

• It uses short terms or simple English language 
syntaxes to write code for programs before it is 
actually converted into a specific programming 
syntaxes to write code for programs before it is 
actually converted into a specific programming 
language. 

• This is done to identify top level flow errors, and 
understand the programming data flows that the 
final program is going to use.



Analyse an Algorithm
• For a standard algorithm to be good, it must be efficient. 

Hence the efficiency of an algorithm must be checked and 
maintained. It can be in two stages:
– Priori Analysis: “Priori” means “before”. Hence Priori analysis means 

checking the algorithm before its implementation. In this, the 
algorithm is checked when it is written in the form of theoretical 
steps. This Efficiency of an algorithm is measured by assuming that 
all other factors, for example, processor speed, are constant and all other factors, for example, processor speed, are constant and 
have no effect on the implementation. This is done usually by the 
algorithm designer. It is in this method, that the Algorithm 
Complexity is determined.

– Posterior Analysis: “Posterior” means “after”. Hence Posterior 
analysis means checking the algorithm after its implementation. In 
this, the algorithm is checked by implementing it in any 
programming language and executing it. This analysis helps to get 
the actual and real analysis report about correctness, space 
required, time consumed etc.



Algorithm Complexity

• Space Complexity: Space complexity of an 
algorithm refers to the amount of memory that 
this algorithm requires to execute and get the 
result. This can be for inputs, temporary 
operations, or outputs.operations, or outputs.

• Time Complexity: Time complexity of an 
algorithm refers to the amount of time that this 
algorithm requires to execute and get the result. 
This can be for normal operations, conditional if-
else statements, loop statements, etc.



Flowchart

• Symbols used
– Start/end
– Input/Output
– Process
– Decision– Decision
– Control flow



Solving a problem
• Example: Consider the example to add three numbers and 

print the sum.
• Step 1: Fulfilling the pre-requisitesAs discussed above, in order 

to write an algorithm, its pre-requisites must be fulfilled.
– The problem that is to be solved by this algorithm: Add 3 numbers 

and print their sum.
– The constraints of the problem that must be considered while 

solving the problem: The numbers must contain only digits and no 
The constraints of the problem that must be considered while 
solving the problem: The numbers must contain only digits and no 
other characters.

– The input to be taken to solve the problem: The three numbers to 
be added.

– The output to be expected when the problem the is solved: The 
sum of the three numbers taken as the input.

– The solution to this problem, in the given constraints: The solution 
consists of adding the 3 numbers. It can be done with the help of ‘+’ 
operator, or bit-wise, or any other method.



Solving a problem (cont…)

• Step 2: Designing the algorithmNow let’s design the 
algorithm with the help of above pre-requisites:

• Algorithm to add 3 numbers and print their sum:
– START
– Declare 3 integer variables num1, num2 and num3.
– Take the three numbers, to be added, as inputs in variables 

num1, num2, and num3 respectively.num1, num2, and num3 respectively.
– Declare an integer variable sum to store the resultant sum of 

the 3 numbers.
– Add the 3 numbers and store the result in the variable sum.
– Print the value of variable sum
– END

• Step 3: Testing the algorithm by implementing it.Inorder
to test the algorithm, let’s implement it in C language.



Example: Addition of first 10 natural number

• Algorithm

Step 1: Start
Step 2: Declare and initialize variable, num=1, sum=0.
Step 3: sum=sum+num
Step 4: if the value of num is less than 10, then goto Step-5 
Step 5: num=num+1 and goto step-3
Step 5: Print the sumStep 5: Print the sum
Step 6: Stop



Example: Addition of first 10 natural number (cont…)

• Pseudocode

1. Int num=1, s=0
2. sum=sum+num
3. if(num<10) then goto step-4 else goto step-5
4. do num=num+1 and goto step-2
5. till the value of num<10
6. Print the sum of numbers.6. Print the sum of numbers.



• Flow chart
Start

Let num=1, Sum=0

Sum= Sum+num

If
(num<10)

?

Stop

Sum= Sum+num

Num=num+1

Print the Sum



Example: Addition of first 10 natural number (cont…)

• C Program
#include<stdio.h>
void main()
{

int num=1, sum=0;
ab: sum=sum+num;
if(num<10)if(num<10)
{

num=num+1;
goto ab;

}
else

printf("\n The sum of first 10 natural number is %d\n", sum);
}


